Tuesday, 10 May 2016

09/05/2016

09/05/2016                                                                              Section 1: Expressions of probability
09/05/2016                                                                   Afdeling 1: Uitdrukkings van waaskynlikheid

Random event: number of possible endings that could occur.

Willekeurige gebeurtenisse: aantal moontlike uiteindes wat kan voorkom.

Outcome: Ending or conclusion of an event.

Uitkomste: Einde of gevolgtrekking van ‘n gebeurtenis.

Probability (P): The value that describe the chance or likelihood that the event will happened or have a certain outcome.

Waarskynlikheid (W): Die waarde van die kans of waarskynlikheid dat die gebeurtenisse sal plaasvind of dat dit ‘n spesifieke uitkomste sal hê.

Probability Scale: an event that can be expressed as a fraction.


Waarskynlikheid skaal: ‘n gebeurtenis wat as ‘n breuk uitgedruk word.

                              0%                                           50%                                          100%
                                                                                                          
                              0                                                ½                                                1
                          Impossible                                Uncertain                                  Certain
                           Onmoontlik                              Onseker                                    Seker

Mathematical definition of probability:

P(event) = no of possible ways an event can happen ÷ total possible outcomes of the event.

Wiskundige definisie van waarskynlikheid:

W(gebeure) = aantal moontlike maniere wat die gebeurtenis kan plaasvind ÷ totale moontlike uitkomste

Take the fractions to % by only multiplying by 100 (x 100)

Neem die breuk na % deur met 100 te vermenigvuldig (x 100)

Examples:
Voorbeelde:


 Let’s see if you can do these basic probabilities without any fancy techniques:
Kom ons kyk of jy hierdie basiese waarskynlikheid kan doen sonder enige moeite:

a)      A regular die is rolled. Find:
‘n Gewone dobbelsteen word gegooi. Vind:

a.    P(1) – (the probability of getting a 1) = 1/6
W(1) – (die waarskynlikheid om ‘n 1 te kry) = 1/6

b.    P(7) – (the probability of getting a 7) = 0
W(7) – (die waarskynlikheid om ‘n 7 te kry) = 0

c.     P(3 or 4) – (probability of getting a 3 or 4) = 2/6  = 1/3 
W(3 of 4) – (die waarskynlikheid om ‘n 3 of ‘n 4 te kry) = 2/6 = 1/3  

d.    P(not a 2) = 5/6
W(nie ‘n 2 nie) = 5/6

e.    P(even) = 3/6 = 1/2
      W(ewe) = 3/6 = 1/2


Examples:
Voorbeelde: 



A card is drawn from a normal pack of 52 cards (No joker included). Find:
‘n Kaart word uit ‘n pak karate gekies van 52 kaarte (geen joker is in die pak nie). Vind:

a.    P(Ace) = 4/52 = 1/13
W(Ace [A]) = 4/52 = 1/13

b.    P(Heart) = 13/52 = 1/4
W(Hart) =  =  13/52 = 1/4

c.     P(Ace or a Heart) = 16/52 = 4/13
W(A en ‘n hart) = 16/52 = 4/13

d.    P(A Ace Heart) = 1/52
W(‘n hart A) = 1/52

e.    P(Red) = 1/2
W(Rooi) = 1/2

Exercise 1 nr. 1 – 3 p. 139
Oefening 1 nr. 1 – 3 bl. 139



No comments:

Post a Comment